Hai sợi dây dài, thẳng, song song đặt cách nhau 10 cm trong không khí. Cường độ dòng điện chạy qua hai dây dẫn ngược chiều và cùng độ lớn là 5,0 A. Xác định cảm ứng từ tại điểm cách đều hai dây dẫn 10 cm.
Bạn đang xem: hai dây dẫn thẳng dài song song cách nhau 10cm trong không khí
Giả sử hai dòng điện I Đầu tiên một vài 2 chạy ngược chiều nhau qua hai dây dẫn song song và vuông góc với mặt phẳng Hình 21.1G.
– Tại M : Vectơ cảm ứng từ \(\overrightarrow {{B_1}} \) do dòng điện I sinh ra Đầu tiên có gốc tọa độ tại M, vuông góc với MC và có phương như hình vẽ. Vectơ cảm ứng từ \(\overrightarrow {{B_2}} \) do dòng điện I 2 có gốc tọa độ tại M, vuông góc với MD và có chiều như hình vẽ.
Lưu ý rằng CMD là tam giác đều cạnh a và góc (CMD) = 60° , nên góc giữa \(\overrightarrow {{B_1}} \) và \(\overrightarrow {{B_2}} \) tại M bằng đến ( \(\overrightarrow {{B_1}} \) M\(\overrightarrow {{B_2}} \) ) = 120°. Ngoài ra, \(\overrightarrow {{B_1}} \) và \(\overrightarrow {{B_2}} \) có cùng độ lớn:
\({B_1} = {B_2} = {2.10^{ – 7}}.{{{I_1}} \over a} = {2.10^{ – 7}}.{{5,0} \over {{{ 10.10}^{ – 2}}}} = {1,0.10^{ – 5}}T\)
Xem thêm: feoh2 + h2so4
nên vectơ cảm ứng từ tổng hợp (\(\overrightarrow {{B}} \) = (\(\overrightarrow {{B_1}} \) + (\(\overrightarrow {{B_2}} \) tại M sẽ trùng với đường chéo của hình bình hành đồng thời là hình thoi (vì B Đầu tiên = QUÁ 2 ).
Do đó, vectơ sẽ nằm trên tia phân giác của góc (\(\overrightarrow {{B_1}} \) M\(\overrightarrow {{B_2}} \) ), hướng lên trên và vuông góc với đoạn CD. Mặt khác, vì góc (\(\overrightarrow {{B}} \) M\(\overrightarrow {{B_1}} \) ) = (\(\overrightarrow {{B}} \) M\(\overrightarrow {{{ ) B_2}} \) ) = 60° nên tam giác được tạo bởi (\(\overrightarrow {{B}} \) ,\(\overrightarrow {{B1}} \) ) hoặc (\(\overrightarrow {{B }} \) ,\(\overrightarrow {{B2}} \)) đều, có các cạnh bằng nhau:
B = B Đầu tiên = QUÁ 2 = 1.0.10 -5 TỶ
Xem thêm: cl2 h20
Bình luận